- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Ganguli, Surya (1)
-
Harvey, Sarah E (1)
-
Mali, Ankur (1)
-
Nwogu, Ifeoma (1)
-
Ocko, Samuel A (1)
-
Ororbia, Alexander G (1)
-
Stock, Christopher H (1)
-
Zee, Timothy (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
Richards, Blake A (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Richards, Blake A (Ed.)While current deep learning algorithms have been successful for a wide variety of artificial intelligence (AI) tasks, including those involving structured image data, they present deep neurophysiological conceptual issues due to their reliance on the gradients that are computed by backpropagation of errors (backprop). Gradients are required to obtain synaptic weight adjustments but require knowledge of feed-forward activities in order to conduct backward propagation, a biologically implausible process. This is known as the “weight transport problem”. Therefore, in this work, we present a more biologically plausible approach towards solving the weight transport problem for image data. This approach, which we name the error-kernel driven activation alignment (EKDAA) algorithm, accomplishes through the introduction of locally derived error transmission kernels and error maps. Like standard deep learning networks, EKDAA performs the standard forward process via weights and activation functions; however, its backward error computation involves adaptive error kernels that propagate local error signals through the network. The efficacy of EKDAA is demonstrated by performing visual-recognition tasks on the Fashion MNIST, CIFAR-10 and SVHN benchmarks, along with demonstrating its ability to extract visual features from natural color images. Furthermore, in order to demonstrate its non-reliance on gradient computations, results are presented for an EKDAA-trained CNN that employs a non-differentiable activation function.more » « less
-
Stock, Christopher H; Harvey, Sarah E; Ocko, Samuel A; Ganguli, Surya (, PLOS Computational Biology)Richards, Blake A (Ed.)We introduce a novel, biologically plausible local learning rule that provably increases the robustness of neural dynamics to noise in nonlinear recurrent neural networks with homogeneous nonlinearities. Our learning rule achieves higher noise robustness without sacrificing performance on the task and without requiring any knowledge of the particular task. The plasticity dynamics—an integrable dynamical system operating on the weights of the network—maintains a multiplicity of conserved quantities, most notably the network’s entire temporal map of input to output trajectories. The outcome of our learning rule is a synaptic balancing between the incoming and outgoing synapses of every neuron. This synaptic balancing rule is consistent with many known aspects of experimentally observed heterosynaptic plasticity, and moreover makes new experimentally testable predictions relating plasticity at the incoming and outgoing synapses of individual neurons. Overall, this work provides a novel, practical local learning rule that exactly preserves overall network function and, in doing so, provides new conceptual bridges between the disparate worlds of the neurobiology of heterosynaptic plasticity, the engineering of regularized noise-robust networks, and the mathematics of integrable Lax dynamical systems.more » « less
An official website of the United States government

Full Text Available